Prime Factors

Freddie the Factor Fox is investigating prime factors. Prime factors are prime numbers which, when multiplied together, give you the original number. One way to calculate the prime factors of a number is to use a 'factor tree'. For example, if you wanted to calculate the prime factors of 48 , follow these simple steps:

1. Write 48 at the top of the factor tree. Calculate two factors of $48(6 \times 8)$ and write these on the branches.

2. Now, continue and factor 6 into 3×2, adding more branches to the factor tree.
3. Next, factor 8 into 4×2.
4. We can factor 4 into 2×2 next.

Now help Freddie Fox by using the 'factor tree' method above to calculate the prime factors for each number below. Once completed, write the prime factors on the line provided.

Prime factors of $12=$ \qquad Prime factors of $20=$ \qquad

Prime factors of $18=$ \qquad Prime factors of $30=$ \qquad

\qquad

Prime factors of $36=$ \qquad Prime factors of $24=$ \qquad

Challenge! Is there more than one possible set of prime factors for each number? How do you know?

Prime Factors - Answers

Prime factors of $12=\mathbf{3} \times \mathbf{2 \times 2}$

Prime factors of $18=\mathbf{2 \times 3 \times 3}$

Prime factors of $15=\mathbf{3} \times \mathbf{5}$

Prime factors of $36=\mathbf{2 \times 2 \times 3 \times 3}$

Prime factors of $20=2 \times 2 \times 5$

Prime factors of $30=5 \times 2 \times 3$

Prime factors of $50=2 \times 5 \times 5$

Prime factors of $24=2 \times 2 \times 2 \times 3$

Challenge!

There is only one possible set of prime factors for each composite (non-prime) number. This is part of the fundamental theorem of arithmetic.
\qquad Prime factor of $20=$ \qquad

